Instability of Superoxide Dismutase 1 of Drosophila in Mutants Deficient for Its Cognate Copper Chaperone*S⃞

نویسندگان

  • Kim Kirby
  • Laran T. Jensen
  • Janet Binnington
  • Arthur J. Hilliker
  • Janella Ulloa
  • Valeria C. Culotta
  • John P. Phillips
چکیده

Copper,zinc superoxide dismutase (SOD1) in mammals is activated principally via a copper chaperone (CCS) and to a lesser degree by a CCS-independent pathway of unknown nature. In this study, we have characterized the requirement for CCS in activating SOD1 from Drosophila. A CCS-null mutant (Ccs(n)(29)(E)) of Drosophila was created and found to phenotypically resemble Drosophila SOD1-null mutants in terms of reduced adult life span, hypersensitivity to oxidative stress, and loss of cytosolic aconitase activity. However, the phenotypes of CCS-null flies were less severe, consistent with some CCS-independent activation of Drosophila SOD1 (dSOD1). Yet SOD1 activity was not detectable in Ccs(n)(29)(E) flies, due largely to a striking loss of SOD1 protein. In contrast, human SOD1 expressed in CCS-null flies is robustly active and rescues the deficits in adult life span and sensitivity to oxidative stress. The dependence of dSOD1 on CCS was also observed in a yeast expression system where the dSOD1 polypeptide exhibited unusual instability in CCS-null (ccs1Delta) yeast. The residual dSOD1 polypeptide in ccs1Delta yeast was nevertheless active, consistent with CCS-independent activation. Stability of dSOD1 in ccs1Delta cells was readily restored by expression of either yeast or Drosophila CCS, and this required copper insertion into the enzyme. The yeast expression system also revealed some species specificity for CCS. Yeast SOD1 exhibits preference for yeast CCS over Drosophila CCS, whereas dSOD1 is fully activated with either CCS molecule. Such variation in mechanisms of copper activation of SOD1 could reflect evolutionary responses to unique oxygen and/or copper environments faced by divergent species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli

Background: Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity.Objectives:The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic act...

متن کامل

Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants.

Mutations in Cu, Zn superoxide dismutase (SOD1) cause the neurodegenerative disease familial amyotrophic lateral sclerosis from an as-yet-unidentified toxic property(ies). Analysis in Saccharomyces cerevisiae of a broad range of human familial amyotrophic lateral sclerosis-linked SOD1 mutants (A4V, G37R, G41D, H46R, H48Q, G85R, G93C, and I113T) reveals one property common to these mutants (incl...

متن کامل

microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis.

microRNA398 (miR398) is a conserved miRNA of plants that targets two of the three copper/zinc superoxide dismutases (SOD) of Arabidopsis (CSD1 and CSD2) by triggering cleavage or inhibiting translation of their mRNAs. We analysed the transcriptomes of mutants impaired in miR398 production, and found that the mRNAs encoding the copper chaperone for superoxide dismutase (CCS1), which delivers cop...

متن کامل

Human superoxide dismutase 1 (hSOD1) maturation through interaction with human copper chaperone for SOD1 (hCCS).

Copper chaperone for superoxide dismutase 1 (SOD1), CCS, is the physiological partner for the complex mechanism of SOD1 maturation. We report an in vitro model for human CCS-dependent SOD1 maturation based on the study of the interactions of human SOD1 (hSOD1) with full-length WT human CCS (hCCS), as well as with hCCS mutants and various truncated constructs comprising one or two of the protein...

متن کامل

Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase.

Recent studies in Saccharomyces cerevisiae suggest that the delivery of copper to Cu/Zn superoxide dismutase (SOD1) is mediated by a cytosolic protein termed the copper chaperone for superoxide dismutase (CCS). To determine the role of CCS in mammalian copper homeostasis, we generated mice with targeted disruption of CCS alleles (CCS(-/-) mice). Although CCS(-/-) mice are viable and possess nor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Biological Chemistry

دوره 283  شماره 

صفحات  -

تاریخ انتشار 2008